①若A测定或∆A测定超出标准线性吸光值范围:高于最高值建议将待测样本使用蒸馏水适当稀释后再进行测定;低于最低值建议制备更高浓度样本后再进行测定,计算时相应修改;
②浓硫酸具有强腐蚀性,请做好防护措施并谨慎操作;
③待测样本稀释倍数可参照公式计算
最大稀释倍数(DMax)=74"×W×A"
最小稀释倍数(DMin)=6"×W×A"
注释:W:样品质量,g;A:预估淀粉含量,mg/g;例:预估淀粉含量为400 mg/g(40%),称取0.05 g样本进行淀粉提取,DMin=120,DMax=1480,即待测样本稀释倍数可选择120-1400倍。
[1] Zhao Y, Yu S, Zhao H, et al. Integrated multi-omics analysis reveals the positive leverage of citrus flavonoids on hindgut microbiota and host homeostasis by modulating sphingolipid metabolism in mid-lactation dairy cows consuming a high-starch diet[J]. Microbiome, 2023, 11(1): 236.(IF 15.5)
[2] Zhao Y, Li L, Tan J, et al. Metagenomic insights into the inhibitory effect of phytochemical supplementation on antibiotic resistance genes and virulence factors in the rumen of transition dairy cows[J]. Journal of Hazardous Materials, 2025: 137717. (IF 12.2)
[3] Tian X, Hu Y, Gao Y, et al. Effects of Aspergillus flavus infection on multi-scale structures and physicochemical properties of maize starch during storage[J]. Carbohydrate Polymers, 2024: 122322. (IF 11.2)
[4] Zhao Y, Yu S, Tan J, et al. Bioconversion of citrus waste by long-term DMSO-cryopreserved rumen fluid to volatile fatty acids and biogas is feasible: A microbiome perspective[J]. Journal of Environmental Management, 2024, 351: 119693.(IF 8.7)
[5] He Z, Zeng J, Hu J, et al. Effects of cooking methods on the physical properties and in vitro digestibility of starch isolated from Chinese yam[J]. International Journal of Biological Macromolecules, 2024: 131597. (IF 8.2)
[6] Li J, Yang H, Wei Y Y, et al. Ultra-small starch microspheres with narrow size distribution prepared in aqueous two-phase system of starch-PVP[J]. International Journal of Biological Macromolecules, 2025: 141544. (IF 7.7)
[7] Wang Z, Chen Y, Hong Y, et al. From laboratory-level construction to pilot-level validation: Utilization of compound mutagenic bacterial agent for efficient treatment of kitchen waste[J]. Journal of Environmental Chemical Engineering, 2025, 13(3): 116441. (IF 7.4)
[8] Chai J, Li J, Liu Q, et al. Differential changes in respiratory metabolism and energy status in the outer pericarp and core tissues affect the ripening of ‘Xuxiang’kiwifruit[J]. Postharvest Biology and Technology, 2024, 212: 112876. (IF 7.0)
[9] Liu Z, Wu C, Li W, et al. OsCSLD4 confers salt–alkali tolerance by regulating gene expressions in photosynthesis and carbohydrate biosynthesis pathways, cell wall hemicellulose accumulation and physio-biochemical adaptability in rice[J]. Plant Stress, 2024: 100604. (IF 6.8)
[10] Wu S, Zhang Y, Chen B, et al. Combined treatment of rice bran by solid-state fermentation and extrusion: Effect of processing sequence and microbial strains[J]. Food Chemistry: X, 2024: 101549. (IF 6.5)
[11] Yu P, Pan X, Chen M, et al. Ultrasound-assisted enzymatic extraction of soluble dietary Fiber from Hericium erinaceus and its in vitro lipid-lowering effect[J]. Food Chemistry: X, 2024, 23: 101657. (IF 6.5)
[12] Zhang Y, Dai T, Liu Y, et al. Effect of exogenous glycine betaine on the germination of tomato seeds under cold stress[J]. International Journal of Molecular Sciences, 2022, 23(18): 10474.(IF 6.208)
[13] Yu J, Yang J, Dai S, et al. PpAmy1 Plays a Role in Fruit-Cracking by Regulating Mesocarp Starch Hydrolysis of Nectarines[J]. Journal of Agricultural and Food Chemistry, 2024.(IF 6.1)
[14] Han L, Li R, Jin X, et al. Metabolomic analysis, extraction, purification and stability of the anthocyanins from colored potatoes[J]. Food Chemistry: X, 2024: 101423. (IF 6.1)
[15] Sun M, Li Y, Chen Y, et al. Combined transcriptome and physiological analysis reveals exogenous sucrose enhances photosynthesis and source capacity in foxtail millet[J]. Plant Physiology and Biochemistry, 2024: 109189. (IF 6.1)
[16] Peng D, Tang D, Zhong C, et al. Interactions between Fuzi (Aconiti Lateralis Radix Preparata) total alkaloids and Fuzi starch: Structural, physicochemical, and rheological properties[J]. LWT, 2023, 182: 114879.(IF 6)
[17] Chai J, Yang B, Xu N, et al. Effects of low temperature on postharvest ripening and starchiness in'Cuixiang'kiwifruit[J]. LWT, 2024: 116795. (IF 6.0)
[18] Hou S, Han J, Men Y, et al. Analysis of genotype-by-environment effects on starch content in 281 Tartary buckwheat varieties and evaluation of the physicochemical properties of two elite varieties[J]. LWT, 2024: 115866. (IF 6.0)
[19] Tao J, Bu T, Xie Q, et al. Physicochemical Properties and Functional Characterization of Buckwheat Type 3 Resistant Starch Prepared by Various Treatment Methods[J]. LWT, 2025: 117467. (IF 6.0)
[20] Ren Y, Mu J, Zhao L, et al. Pulsed light treatment affects postharvest quality and regulatory mechanisms of sweet corn[J]. LWT, 2025: 117584. (IF 6.0)
[21] Yang Z, Nan H, Lu X, et al. GhDMT7‐mediated DNA methylation dynamics enhance starch and sucrose metabolism pathways to confer salt tolerance in cotton[J]. The Plant Journal, 2025, 123(2): e70364. (IF 5.7)
[22] Lu J, Wang Y, Wen Y, et al. A ray localized vacuolar sucrose transport is required for wood formation in Populus tomentosa[J]. The Plant Journal, 2025, 123(2): e70347. (IF 5.7)
[23] Mao J, Gao Z, Lin M, et al. Targeted multi-platform metabolome analysis and enzyme activity analysis of kiwifruit during postharvest ripening[J]. Frontiers in Plant Science, 2023, 14: 1120166.(IF 5.6)
[24] Dong L, Wang F, Chen L, et al. Metabolomic analysis reveals the responses of docosahexaenoic-acid-producing Schizochytrium under hyposalinity conditions[J]. Algal Research, 2023, 70: 102987.(IF 5.1)
[25] Wang W, An C, Yao Y, et al. De novo biosynthesis and gram-level production of m-cresol in Aspergillus nidulans[J]. Applied Microbiology and Biotechnology, 2021, 105: 6333-6343.(IF 4.813)
[26] Yuan C, Zhang H, Cao Y, et al. Heap Fermentation Modes of Sauce-flavored Baijiu: Microbial Metabolic Differences and Optimization Strategies for Mechanized Fermentation[J]. Food Bioscience, 2025: 106449. (IF 4.8)
[27] Jiao X, Guo D, Zhang X, et al. The Application of Near-Infrared Spectroscopy Combined with Chemometrics in the Determination of the Nutrient Composition in Chinese Cyperus esculentus L[J]. Foods, 2025, 14(3): 366. (IF 4.7)
[28] Hu J, Hu J, Duan S, et al. Impact of Cooking on Tuber Color, Texture, and Metabolites in Different Potato Varieties[J]. Foods, 2024, 13(23): 3786. (IF 4.7)
[29] Yu Z P, An C, Yao Y, et al. A combined strategy for the overproduction of complex ergot alkaloid agroclavine[J]. Synthetic and Systems Biotechnology, 2022, 7(4): 1126-1132.(IF 4.692)
[30] Wei F, Ma N, Haseeb H A, et al. Insights into structural and physicochemical properties of maize starch after Fusarium verticillioides infection[J]. Journal of Food Composition and Analysis, 2022, 114: 104819.(IF 4.52)
[31] Wan X, Yao G, Wang K, et al. Transcriptomic Analysis of the Response of the Toxic Dinoflagellate Prorocentrum lima to Phosphorous Limitation[J]. Microorganisms, 2023, 11(9): 2216.(IF 4.5)
[32] Ren F, Liu Y, Tian X, et al. What microbes do we eat with traditional fermented sour porridge from China?[J]. Applied Food Research, 2023, 3(2): 100344. (IF 4.5)
[33] Yin Y, Song X, Cui Y, et al. Application of starch-degradation bacteria in cigar tobacco leaf fermentation: effects on starch degradation, microbial communities and metabolic pathways[J]. Frontiers in Microbiology, 2025, 16: 1632731. (IF 4.5)
[34] Li Z, Li X, He F. Non-structural carbohydrates contributed to cold tolerance and regeneration of Medicago sativa L[J]. Planta, 2023, 257(6): 116.(IF 4.3)
[35] Li X, Shen D, Mao J, et al. Increased weight loss and internal air space, degraded starch and pectin combined to cause pulp mealiness in ‘Oregon Spur Ⅱ’apples during ambient storage[J]. Scientia Horticulturae, 2024, 324: 112629.(IF 4.3)
[36] Li X, Li Y, Xi R, et al. GWAS identifies candidate genes affecting water absorption in foxtail millet seeds[J]. Plant Growth Regulation, 2023: 1-9.(IF 4.2)
[37] Ren F, Liu M, Liu Y, et al. Core microbes closely related with the nutrients and flavor of sweet fermented oats (whole grain food) from China[J]. World Journal of Microbiology and Biotechnology, 2023, 39(9): 236.(IF 4.1)
[38] Zhang G, Hua D, Xu J, et al. Pulsed light treatment enhances starch hydrolysis and improves starch physicochemical properties of germinated brown rice[J]. Journal of the Science of Food and Agriculture, 2023.(IF 4.1)
[39] Xu F, Sun D, Wang Z, et al. Highly Efficient Production of Cellulosic Ethanol from Poplar Using an Optimal C6/C5 Co-Fermentation Strain of Saccharomyces cerevisiae[J]. Microorganisms, 2024, 12(6): 1174. (IF 4.1)
[40] Xie W, Jiang Z, Lin L, et al. Optimized Carbon–Nitrogen Fertilization Boosts Fragrant Rice (Oryza sativa L.) Yield and Quality via Enhanced Photosynthesis, Antioxidant Defense, and Osmoregulation[J]. Plants, 2025, 14(12): 1832. (IF 4.1)
[41] Li Z, Li X, He F. Drip Irrigation Depth Alters Root Morphology and Architecture and Cold Resistance of Alfalfa[J]. Agronomy, 2022, 12(9): 2192.(IF 3.949)
[42] Ren F, Liu M, Tan B. Bacterial diversity and metabolites: Exploring correlations with preservative properties in soybean pastes[J]. Journal of Food Science, 2024. (IF 3.9)
[43] Li M, Xu F, Zhao Y, et al. High-Efficient Production of Cellulosic Ethanol from Corn Fiber Based on the Suitable C5/C6 Co-Fermentation Saccharomyces cerevisiae Strain[J]. Fermentation, 2023, 9(8): 743.(IF 3.7)
[44] Zhang K, Wei L, Geng J, et al. Integrated transcriptome and metabolome analysis reveals the impacts of prolonged light exposure on starch and protein content in maize kernels[J]. BMC genomics, 2025, 26(1): 373. (IF 3.5)
[45] Wu X, Li Y, Zhang S, et al. Sucrose participates in the flower bud differentiation regulation promoted by short pruning in blueberry[J]. Fruit Research, 2025, 5(1). (IF 2.7)
[46] Wu H, Li H, Lin J, et al. Establishment and application of novel transient cotyledon and seed transformation systems in Tartary buckwheat[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2025, 160(2): 52. (IF 2.3)