①样品提取过程建议在冰上完成操作,且提取后应当天完成测定;
②若待测样本DPPH自由基清除率(DS%)大于90%,建议将待测样本使用提取液稀释后再进行测定;若待测样本DPPH自由基清除率(DS%)小于5%,建议适当增加烘干样本质量或液体样本体积重新提取后再进行测定,计算时相应修改;
③不同样本DPPH自由基清除能力可能相差较大,若需要比较不同样本的DPPH自由基清除能力,建议对于同一批植物样本加入等量的样本,液体样本加入相同体积,提取物或者药物配制为相同浓度;将样本根据预实验结果进行适当调整,比较同样浓度(相同稀释倍数)的清除率大小;
[1] Liu L, Cui H, Huang Y, et al. Enzyme-mediated reactions of phenolic pollutants and endogenous metabolites as an overlooked metabolic disruption pathway[J]. Environmental Science & Technology, 2022, 56(6): 3634-3644.(IF 11.357)
[2] Lin X, Chang M, Cao M, et al. Trimetallic-doped carbon nitride achieves chondroitin sulfate degradation via a free radical degradation strategy[J]. Carbohydrate Polymers, 2024: 122616. (IF 10.7)
[3] Chen H, Yang Q, Li M, et al. Polyphenol-Based Self-Assembled Nanoparticles Treating Uveitis by Inflammation-Oxidative Stress Suppression[J]. Materials Today Bio, 2025: 102052. (IF 10.2)
[4] Zhou D, Hu Y, Zhou T, et al. Deep eutectic solvent extraction of polysaccharides from Gastrodiae elata with ultrasonic and enzymes assistance: Process optimization, structure, and antioxidant activity[J]. Ultrasonics Sonochemistry, 2025: 107383. (IF 8.7)
[5] Yang Y, Guan M, Fang M, et al. Simultaneous extraction and selective separation of catechins, caffeine and theanine from waste tea residue facilitated by citric acid-based deep eutectic solvent[J]. Separation and Purification Technology, 2024: 130918. (IF 8.1)
[6] Li R, Kang R, Li R, et al. High internal phase emulsion system for curcumin delivery co-constructed by wheat gluten amyloid fibrils and Lycium barbarum polysaccharide[J]. Food Research International, 2025: 116761. (IF 8.0)
[7] Li K, Xu R, Cao J, et al. Nordihydroguaiaretic acid (NDGA) maintains the postharvest quality of fresh daylily flower buds (Hemerocallis citrina) by enhancing antioxidant metabolism and regulating phytohormone equilibrium[J]. Postharvest Biology and Technology, 2023, 200: 112326.(IF 7)
[8] Chen Y, Xu Y, Li D, et al. Exogenous azacytidine alleviates peel browning of postharvest bananas (Musa acuminata) showing an important role of DNA methylation[J]. Postharvest Biology and Technology, 2023, 206: 112554.(IF 7)
[9] Zhou D, Hu Y, He X, et al. Quality analysis and characteristic difference identification of organic tea and conventional planting tea based on ICP, HPLC and machine algorithm[J]. Food Chemistry: X, 2025: 102299. (IF 6.5)
[10] Xing S, Tian Q, Zheng Y, et al. Sulfur dioxide enhances the resistance of postharvest grape berries to gray mold through hydrogen peroxide signaling[J]. Postharvest Biology and Technology, 2025, 221: 113325. (IF 6.4)
[11] Chen J, Li Y, Li F, et al. Physiological, metabolome, and transcriptome analysis revealed the effect of ethyl 3-amino-3-thioxopropanoate on the browning of fresh-cut banana during storage[J]. Postharvest Biology and Technology, 2024, 218: 113176. (IF 6.4)
[12] Li Y, Li J, Zhu Y, et al. Comparative Genomic Analysis and Fermentation Performance of Lactiplantibacillus plantarum Strains in Blueberry (Vaccinium spp.) Juice[J]. Food Bioscience, 2025: 107132. (IF 5.9)
[13] Peng C, Deng L, Tan H, et al. Transcriptome and metabolome analysis of preharvest internal browning in Nane plum fruit caused by high temperatures[J]. Horticultural Plant Journal, 2024. (IF 5.7)
[14] Ma Y N, Xu X, Chen L F, et al. Process optimization and evaluation of quality properties of natto with co-culture of Bacillus subtilis natto and Limosilactobacillus fermentum[J]. Current Research in Microbial Sciences, 2025: 100347. (IF 4.8)
[15] Wen H, Kuang Y, Lian X, et al. Physicochemical Characterization, Antioxidant and Anticancer Activity Evaluation of an Acidic Polysaccharide from Alpinia officinarum Hance[J]. Molecules, 2024, 29(8): 1810. (IF 4.6)
[16] Yi X, Zhang S, Meng D, et al. Optimization of Rosa roxburghii Tratt pomace fermentation process and the effects of mono-and mixed culture fermentation on its chemical composition[J]. Frontiers in Nutrition, 2024, 11: 1494678. (IF 4.0)
[17] Jia G, Yang X, Yu Y, et al. Quercetin carbon quantum dots: dual-target therapy for intracerebral hemorrhage in mice[J]. Molecular Brain, 2025, 18(1): 17. (IF 3.3)